The post Teaching mathematics to physicists — can we do better? first appeared on Fifteen Eighty Four | Cambridge University Press.

]]>

In most departments the training starts with courses on ‘Mathematical Methods for Physicists’, where students learn the basics of integration, divs and grads, urgently required in the first year curriculum. But the role of mathematics in physics transcends that of a collection of methods. At universities where this truth is reflected in the curriculum, conceptual teaching is often outsourced to departments of mathematics. After all, who would be better prepared to teach mathematical concepts than mathematicians themselves?

The above system works, otherwise it would not be implemented at a majority of academic institutions. The question is if we can do better. We believe yes, and that the key to a modernized and more pedagogical approach to teaching mathematics in physics lies in a *stronger integration of conceptual and methodological elements in the mathematics education of physicists by physicists*.

What we have in mind is best explained on an example, the introduction of *vectors* early in the curriculum: the average beginner’s course starts from a hands-on introduction of vectors in *R ^{n}*, with emphasis on

There is a better way of getting started. At the very beginning, invest two or so weeks into a systematic, bottom-up discussion of algebraic foundations — sets, groups, number fields, linear spaces. Students trained in this way ‘see’ groups and vectors everywhere, in functions, matrices, *R ^{n}* and

Similar things could be said about integration theory, vector analysis, (differential) geometry, and other key disciplines of mathematics – conceptual and systematic introductions are rewarding investments which quickly pay off in fast and sustainable progress of students. Our belief in this principle is backed by experience. We have taught the reformed lecture course underlying our textbook about 10 times at two universities. Students trained in this way generally showed higher levels of confidence and proficiency in mathematics than those who went through the standard system. Remarkably, average and weak students are among those who benefit most. For them, it becomes easier to understand connections otherwise seen only by the best of the class. It should also be stressed that emphasis of mathematical concepts does not imply more abstraction. Yes, it does leads to more ‘hygiene’ in notation and to a language appearing to be ‘more mathematical’ than what is standard in physics courses. However, these elements are anchored in intuitive explanations, and hence aren’t perceived as abstract. They support students’ understanding, including that of concurrent courses in pure mathematics.

Encouraged by our uniformly positive experience we suggest a teaching reform at large, not just at our own universities. This was the principal motivation for the substantial work we put into converting our course into a textbook. It is meant to provide a template for what we hope may become a more rewarding introduction to the mathematics needed in contemporary physics.

The post Teaching mathematics to physicists — can we do better? first appeared on Fifteen Eighty Four | Cambridge University Press.

]]>